N65 81359

FACILITY FORM 02

N[MBER) THRU)
(PAGES) {CODE)
(NASA CR OR 14 oé fn gumatm ({CATEGORY)

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Technical Report TR-64-9
NsG-398 June 1964

Utilizing the Macro Generator of IBMAP

for the IBM 7090/7094%*

by
Gerald M. Berns

IBM Corporation

*The computer time for this project was supported by the
National Aeronautics and Space Administration Grant NsG-398.
The author performed the work while assigned to the Computer
Science Center as the IBM Systems Representative.

ABSTRACT

This report is designed to be a manual for using the
macro capabilities of the IBMAP language. The concept of
macro instructions is described and instructions for the
definition and use of ordinary macros, nested macros, and
recursive macros are dgiven, with many illustrative exam-
ples. Special attention is given to the concept of "set-
value" and to the SET, IFT, IFF, and IRP pseudo-operations.

Also included are several Fortran-—-like macro defini-
tions which might be of valus to the IBMAP programmer.

TABLE OF CCNTENTS

Abstract
Introduction
Macro Instructions
The Basics of Defining and Using a Macro Instruction
The MACRO and ENDM Pseudo-Operations
Macro Related Pseudo-Operations and Concepts
IRP- The Indefinite Repeat Pseudo-Operation
Set-Value
The SET Pseudo-Operation
IFT and IFF, the "If True" and "If False" Pseudo-
Operations
Utilizing IBMAP Macro Generating Power
Recursive and Non-Recursive Nested Macros
Additional Items
PMC- the print Macro Cards Pseudo-Operation
ETC Cards in Macro Definitions and Instructions
An Additional Note on the SET Pseudo-Operation
Discussion of the Operation and Use of the Macro Generator
Appendix A: A Set of Fortran-like Macro Definitions
{(Mactran)
The "Go To" and the "Computed Go To" Statements
The "Do" and “Continue® Statements
The "Read"” and "Write" Statements

Appendix B: Bibliography and References

Page

10

10

12
16
17
23
23
23
24

25

27
27
29
35

40

UTILIZING THE MACRO GENERATOR OF IBMAP FOR

THE IBM 7090/7094

INTRODUCTION

The IBMAP macro generator has more capability than had
the macro generators of the assembly languages which pre-
ceded it. Unfortunately, applications programmers in the
past have made little use of the power available in the
macro generators of the older languages, and they show little
sign of taking advantage of the greater macro power avail-
able to them now. Much of the programmers' reluctance to
utilize macros can be attributed to the "mystique"” which
seems to surround these pseudo-operations--a "mystique"
that arises in the very name "macro" itself and that is
perpetuated by the scarcity of information on the subject;
I am aware of no IBM Education Center classes that teach
the use of macros in any depth. And if programmers speak
in hushed tones of macro instructions, they shudder at the
sound of "nested" macros and positively blanch whenever
a "recursive"” macro happens to be mentioned. Set-values,
the SET pseudo-operations, and coupled "if" statements
(and uncoupled, too for that matter), are practically un-
heard of, and the IRP operation has on it the dust of
years of disuse.

What is required is a straight-forward presentation
of what a macro instruction is, how one is defined to do
a particular job, and how the defined macro is used.
Without this information a large part of the improvement
in IBMAP over its predecessors is lost. This point is
made strongly and simply by considering the acronym
"IBMAP" itself; it stands for the IBM Macro Assembly
Program.

MACRO INSTRUCTIONS

Macrc instructions have two major uses: they save the
programmer the time and effort involved in writing repetitious
blocks of code, and they enable the programmer to accomplish

tasks within an assembly language program that cannot be done
in any other way.

A macroc instruction, once it is defined, is used ("called")
by writing th2 rame of the macro instruction in the operation
field (beginning in column 8) just as any hardware or pseudo
operation is ccded; all that is required is that each macro
instruction be defined before its initial use in a program
deck. Each macro instruction used is expanded by the assembly
program at the place in the program deck at which it occurs.

- Each macro instruction is thus automatically replaced by the
pertinent instructions from the macro definition. In this
way the programmer is relieved of the chore of writing the
blocks of code, and in this way can code be generated in

the program deck which can be generated by no other method.

The Basics of Defining and Using a Macro Instruction

The MACRO and ENDM Pseudo Operations

Suppose in a program deck there existed the following code:

CLA XA
ADD XB
STO XC
CLA X
ADD Y
STO Z
CLA XB
ADD p4
STO A

The programmer could have saved himself the effort of writ-
ing the repetitious sequences of instructions by defining a simple
macro instruction to do the same job, such as:

columns 1 8 14-16
STOSUM MACRO A, B, C
CLA A
ADD B
STO C
ENDM STOSUM

where the symbol used in the location field of the MACRO pseudo-
operation becomes the name of the macro instruction (it may be
the same as any other valid symbol used in the program). The
variable field of the MACRO pseudo-op contains a list of "dummy"
arguments (any of which may be the same as any symbol used in
the program or any other macro definition), each of which is re-
placed by real arguments when the macro instruction is used in
the program deck. Each macro definition must be ended by the
pseudo-op ENDM with the name of the defined macro operation in
the first variable field (or else blanks).

The programmer, having properly defined his macro operation,
may now use it in his program deck as follows:

8

STOSUM XA, XB, XC
STOSUM X, Y, 2z
STOS UM XB, 2, A

The instructions actually assembled in the program deck will
be identizal to the instructions that were written earlier with-
out using the macro instruction, but the programmer, by using the
macro instruction STOSUM, has saved the time required to write the
repetitious code. The time saving in many cases can be substantial.

A macro definition is limited to 63 substitutable ("dummy®)
arguments, each one of which must not be more than 6 characters
long. These arguments may be used to represent the location field,
the operation field, the variable field (as has already been shown),
and the comments field of any instruction in the macro definition--
or any one, two, or three of these fields. For example, consider
the macro definition

QPOLY MACRO COEFF, LOOP, DEG, T, OP
AXT DEG, T
LDQ COEFF
LOOP FMP GAMMA
0] COEFF + DEG + 1, T
XCaA
TIX Io0°P, T, 1
ENDM QPOLY

Suppose it were used in a program deck as follows:

CLA X
STO Y
X015 QPOLY Cl - 4, FIRST, 5, 4, FAD

then the code that would be generated by the macro QPOLY is:

X015 AXT 5, 4
LDQ Cl - 4
FIRST FMP GAMMA
FAD Cl + 2, 4
XCA
TIX FIRST, 4, 1

Note that the location field of QPOLY contains the symbol
X015 and that this symbol becomes the name of the first instruction
in the macro expansion. Note also that the symbol GAMMA is not a
dummy argument since it does not appear in the variable field of
the MACRO pseudo-op; it is an ordinary symbol and is called "text".

A macro definition, although it takes space on the coding sheet
to write it, does not take core space away from the executable pro-
gram. When the assembly program encounters a macro definition it
inserts it in a special form into the "macro skeleton table" (space
in the assembler set aside for macro definitions) and places the

name of tke macro instruction in the operation code dictionazy.
Thus, the macro definition requires core only during assembly -
not during execution.

If a macro instruction name is the same as the name of any
hardware or pseudo-operation (such as, for example, CLA) then the
operation is redefined by the macro definition.

A macro definition may contain in it any hardware instructions,
pseudo-operations, macro instructions, or macro definitions. If
it contains another macro instruction, then the macro instruction
within is called a "nested" macro.

"Dummy" arguments in the variable field of a MACRO pseudo op
may be separated one from the other by any of =+-%*/,' (). The
following are all equivalent and valid:

XYz MACRO LOAN, RATE, INTRST
XYz MACRO LOAN*RATE=INTRST
XY2 MACRO LOAN (RATE)INTRST

Parentheses, when used, must be used in pairs. Only commas
or parentheses may be used to separate the arguments of a macro
instruction. When in doubt about which delimiter to use, use
the comma; it is always valid.

The apostrophe is used to insert a substitutable argument in-
to any field. For example, look at the definition of the macro
instruction MESS:

MESS MACRO A, B, C ,
BCI A,'B' ERROR. CONDITION'C" IGNORED
ENDM MESS

If used as follows:

MESS 6,WRITE, S
it produces:

BCI® 6,WRITE ERROR. CONDITIONS IGNORED.
If it is used as:

MESS 6,FIELD,

it produces:
BCI 6,FIELD ERRCR. CONDITION IGNORED.
It may also be used as focllows:
MESS 8, (READ REDUNDANCY!},
which produces:
BCI 8,READ REDUNDANCY ERROR. CONDITION IGNORED.

Observe that a trailing comma indicates that the pertinent
substitutable argument is to be replaced by nothing (a “null"
field), and that a comma followed by an op2n paren does not in-
dicate a null field - in this case the comma is redundant but
allowable. Also note that everything (blanks included) within
a pair of parentheses replaces the appropriate "dummy" argument;
this is in fact the only way to have an imbedded blank in the vari-
dble field of a macro instruction without stopping the variable
field scan. Any macro instruction argument may be placed within
parentheses if desired - this feature is not restricted to only
those arguments containing imbedded blanks.

Another example of a macro definition:

MN MACRO A, B, C
A B

C
ENDM MN

when used as fcllows:
MN (AXT 10,1) (BEGIN ROUTINE) (ALPHA TRA BETA)
It produces:

AXT 10,1 BEGIN ROUTINE
ALPHA TRA BETA

Macro Related Pseudo—Operations and Concepts

To appreciate the possibilities inherent in IBMAP macro def-
initions, it is necessary at the onset that the reader become
familiar with the workings of the IRP, SET, IFT and IFF pseudo-
operations and understand the set- or S-value concept.

IRP - the Indefinite Repeat Pseudo-Operation

Suppose one found that he had occasion to write several
times in a program deck code like the following:

CLA CHAS
FAD XY
FAD Z
FAD =012
FAD AL
FAD RUTH

but that, on each occurrence of this particular block of code,
a different number of FAD's were required. Using IRP in the
macro definition this problem is easily solved, as follows:

SUM MACRO
CLA
IRP
FAD
IRP
ENDM SUM

B

oW

The macro instruction is used as follows:

SUM CHAS (XY,2,=012 ,AL,RUTH)

The code generated is identical to that shown above. Using
SUM with fewer (or more) subarguments works equally well:

SUM A(B,C) produces CLA A
FAD B
FaAD C

SUM A(B)
or produces
STM A,B

CLAa A
FAD B

In a macro definition an IRP occurring with one "dummy” argu-
ment in the variable field denotes the beginning of an “IRP loop",
and an IRP with a blank variable field denotes the end of an “IRP
loop"”. Within this loop each argument of the macro instruction
within the parentheses (each is called a "subargument") replaces
the pertinent "dummy" argument each time through the loop, and the
loop is negotiated as many times as there are subarguments. If
the pertinent argument is null - that is, if there are no subargu-
ments, the entire "IRP loop" is eliminated.

. 4 3 2

Suppose one had to code the polynomial AX + BX™ + CX" + DX + E,
which can be rewritten (((AX + B)X + C)X + D)X + E, where A,B,C
and D are called "coefficients" and E is a constant which may be
considered to be the coefficient of Xo(l). The code might be:

CLA A
(xca
FMP X
FAD B
XCA
FMP X
FAD C
XCA
FMP X
FAD D
XCA
%FMP X
FAD E

Note that the repeating group of instructions is

XCA
FMP X
FAD COEFF (except the first, or high order

coefficient) -

A macro might be defined for just this repeating group:

REPEAT MACRO COEFF ,VAR
IRP CCETFE
XCA
FMP VAR
FAD CCEF'FR
IRP
ENDM REPEAT

Another macro, POLY, might be defined to sclve the polynomial,
using the nested macro instruction REPEAT:

POLY MACRO COEFF1l,COEFF, VAR
CLA COREFF1
REPEAT (COEPT) VAR
ENDM POLY

POLY, if used as follows:
POLY A(B,C,D,E)X

produces the same code given above. COEFF is written within paren-
theses in the variable field of the nested macro instruction

REPEAT because it will be replaced by subarguments and the trans-
mission of all subarguments is desired.

POLY might have been defined in one macro definition, elimina-
ting the nested macro, as follows:

PQLY MACRO CCEFFl,COEFF ,VAR

CLA CCEFF1

IRP COLFF

XCA

FMP VAR

FAD COEFF

IRP

ENDM POLY

If used as above it produces the same code.

Note that the macro POLY, once defined as above, may be used to
evaluate a polynomial of any order, not just one of fourth order!

The pseudo-op IRP may only be used in a macro definition; it
is undefined elsewhere. Nested "IRP loops" (i.e. "IRP loops" within
"IRP loops") are not allowed; however, nested macro instructions
which themselves contain"IRP loops" are allowed within an "IRP locp"

10

and this type of coding may continue to any “depth" {level of
nesting of macrcs).

Set-Value

A set- or S-value is the "immediate" value that a symbol is
assigned during the first pass of the assembler, and it is tre
first pass of the assembler that is of importance in the writing
of macros. During its first pass the assembler processes the deck
serially; that is, instructions are processed in the order in wkriohk
they occur in the card deck, regardless of whether location —our-
ters or ORG's have been used and regardless of location courter
hierarchy. When a symbol appears in the location field (i.e. it
is defined; of any instruction (except SET), it is assigned a
set-value of 1. Any symbol which is used before it is defined has
a set-value of zero associated with it at that place in the deck.
In the following example, at the point (A} the set-value of X is
zero and the set-value of Y is 1, and at the point (B) the set
value of both X and Y is 1:

USE STOR
Y DEC 10
USE
CLA X
ADD Y (a)
USE PREVIOUS
X DEC 5
USE PREVIOUS
DVH X (B)

The set-value of a symbol may be changed from 1 or zero to other
values by using the symbol in a SET operation.

The SET Pseudo-Operation

The symbol appearing in the location field of a SET pseudo op
is defined, or, if it has appeared in the location field of a pre-
vious SET, its set-value is redefined. Its new set-value is equal
to the resulting set-value of the expression appearing in the vari-
able field. The maximum set-value is 32767; set-values are modulo
32768. For example, consider the following sequence of instructions:

11

s-value of J s-value of ¥

J SET 10 10 0
(a) AXT K.4 10 0
K SET 21 10 21
J SET K/J 2 21
K SET J 2 2

Note that the instruction at (A) is assembled as AXT 0.4.

The primary utility of SET in macros is counting within an IRP
\ loop.

Suppose in a program deck the following seguence cf instruc-
tions appeared many times:

| ~- TRA *4
| PZE A
PZE B

PZE N
but each time the number of PZE's was different and each time
the desired transfer was to the instruction immediately follow-

ing the last PZE. Using the SET pseudo-op in an IRP loop en-
ables a macro to be written to accomplish this task:

LoCc2 MACRO A

Z.,%. SET 0
IRP A

2.2, SET Z

IRP

TRA *+2.2.+1

IRP A

PZE A

IRP

ENDM Loc2

12
To use LOC2:
LOC2 (Al1,B1.21,D1,E1)

The set-value of the symbol Z.Z2. is used here as a countsr.
The first thing that is done in the macro definition is that it
is SET to zero {or "initialized"). The first IRP loop is on
"dummy" argument A, and 2.Z. is incremented by one each tims
through the loop. Since, as we have used it. theres are five sub-
argument (Al,Bl1,C1l,Dl, and El) which replace the “dummy” argu-
ment A, at the conclusion of the last (fifth) trip through the
first IRP the set-value of Z2.Z2. is 5. Since for this usage there
will also be five PZE's (a PZE for each subargument) the desired
transfer,*+Z.Z.+1, will be to *+6. Thus, tha code generated will
be:

TRA *+6
PZE Al
PZE Bl
PZE Cl
PZE Dl
PZE El

It can be seen that the macro LOC2 will be valid for any
number of subarguments (PZE's desired).

It is the author's convention to write "Set symbols™ of
the form "2.Z." only. The interspersed periods help to avoid
inadvertent use of the "Set symbol" in the locaticn field of
any other operation than SET, which would result in the symbol
being "improperly qualified".

IFT AND IFF, the "If True" and "If False" Pseudo-Operations

Most of the improvement in power in the IBMAP macro generator
is due to the many new features of IFT and IFF. Tae "i1f" gtate-
ment, used alone or in conjunction with other "if"” statements,
determines if the single next instruction (be it a hardware in-
struction, pseudo op, or macro instruction)! immediately follow-
ing the "if" statement (or group of "if" statements) will be
assembled or not. If the condition specified by the "“if" state-
ment is met, or if the requisite conditions specified by a group
of "if" statements acting in conjunction is met, the next single
instruction is assembled; if the requisite condition(s) are not
met, the next instruction is not assembled.

13

Elemants may be compared in the wvariable field cn an “"if"
statement by their set-values or by their B{D values. They may
be compared on the basis of greater than, equai to. or less than,
and successive "if's" may be combined by using the logical CR

or the logical AND. Some examples:
ADDD MACRO A,B,<
CLA A
ADD B
IFF /C/=/8TOR/
‘ STO C
f ENDM ADDD

If the parameter substituted for "dummy” argument C when
the macro instruction ADDD is used is not literally the symbol
"STOR", then and only then is the STO instruction assembled.

| Two uses of ADDD:

ADDD X,Y,2 ADDD X,¥,8TOR
produce:

cLa X CLA X

ADD 4 ADD v

STO Z

The way to think of this is that STO Z is assembled because
the condition of the "if" statement preceding it was met., i.e.
it is false that "Z" is literally "STOR" - therefore assemble
STO Z.

Suppose it is desired that the ST0 instruction be assembled
only if the argument substituted for the "dummy" argument C is
not STOR, and if the argument is a symbol that has been previously
defined (we assume here that it has not appeared in a SET operation):
i.e., the conditions for assembly of STO C are: "C"#"STOR" and the
set-value of "C"=1.

ADDD MACRO A,B,C
CLA A
IFF /C/=STOR/, AND
IFT c=1
STO C

ENDM ADDD

J4

STC C will be assembled if and only if both conditions
(because of the "AND") are met.

To assemble STO C if either condition {or both) is met, re-
place "AND" with "OR".

To assemble STO C only if the set-value of ths argument
which replaces C has a set-value greater than 5 (for example! s

IFT C=+5

STO Cc
ENDM ADDD

To assemble STO C only if the set-value of the argument
which replaces C has a set-value less than 10 {for example):

IFT C=-10
STO C
ENDM ADDD

To assemble STO C if the set-value of the argument which
replaces C has a set-value greater than 5 but less than 10:

IFT C=+5,AND

IFT Cc=-10
STO Cc
ENDM ADDD

To assemble STO C if the set-value of the argument which re-
places C has a set-value greater than 5, less than 10, and if it
is not literally the symbol "STOR", or if and only if it is the
symbol "BUD":

15

IFT C=+5,AND

IFT C=-10,AND

IFT /C/=/STOR/, OR
IFT /C/=/BUD/

STO MAC

ENDM ADDD

If this last mentioned ADDD is used as follows:

1) BUD SET 3 3) saMm SET 7

ADDD X,Y,BUD ADDD X,Y,saM
2) STOR SET 9 4) BOB SET 5

ADDD X,Y,STOR ADDD X,Y,BOB

the following code is generated:

1) cLa X 2) cra X 3) CcLa X 4) CLA X
ADD Y ADD Y ADD Y ADD Y
STO MAC STO MAC

The relational operators "greater than", "equal to", and

"less than" all may be used with BCD fields. However, these fields
are compared on a left-justified, scientific collating sequence,
and some care is required in handling these. For example, the
statement

IFT /10/=+/3/

is not true, and the next instruction will not be assembled.

16

The "i1f" statement, unlike IRP, may be used anywhere in the
program and not just in macro definitions; however, it yields :its
greatest utility in macro definitions. It (singly or in conicined
groups) only affects the assembly of the single copsraticn fcllow-
ing, but that cperation may be a macro cperation which can expan
to any length.

Utilizing IBMAP Macro Generating Power

Previously we discussed writing a macro definition to evaluate
a polynomial equation of any order, using the IRF pseudc-oparation.
It was used to generate the code for (((AX + B!X + !X + D)X + E
as follows:

POLY A(B,C,D,E)X
This generated:

CLA A
XCA

FMP X
FAD B
XCA

FMP X
FAD C
XCA

FMP X
FAD D
XCA

FMP X
FAD E

Using IRP, SET, and the "if" statements, i1t 1s possible to
write a macro definition for POLY which is usad as fcllows:

POLY (A,B,C,D,E)X

~ -
and which assembles ILDQ A instead ofiFLA éf
XCA

17

EOLY MACRO COEFF , VAR
Z.Z. SET 0
IRP COEFF
IFT Z.2. =0
LDQ COEFF
IFT 2.2, = +1
XCA
IFF Z2.2. = 0
EMP VAR
IF¥ Z.2. = 0
EFAD COEFF
Z.%. SET Z2.Z2. + 1
IRP
ENDM POLY

Used POLY (A,B)X, which expands AX + B, the code generated is:

LDQ A
FMP X
FAD B

Z2.Z. is initially cleared (the set-value) to zero. The rest
of the macro definition is an IRP loop on the dummy variable COEFF.
This loop, in expanding the macro as used, will be negotiated
twice, once for CCOEFF=A and once for COEFF=B. On the first trip
through, with CCEFF=A, Z.Z2. is zero; thus LDQ A is assembled but
not XCA nor FMP X nor FAD A. Next Z.Z. is incremented to 1 and
the IRP loop is reentered for COEFF=B. Neither LDQ B nor XCA
are assembled, but, since Z.Z. is not zero, FMP X and FAD B are
assembled and the macro is fully expanded. If the polynomial
is greater than first order so that the IRP loop is negotiated
three or more times, on the third and succeeding times through
the loop (with Z.Z. greater than 1) the XCA instruction is assembled.

Recursive and Non-Recursive Nested Macros

A recursive macro is one which is used as a nested macro in-
struction within its own definition. In the following definition
of a macro named PCLY2 (this time to evaluate a third order or
lower polynomial) the nested macro CYCLE is used: CYCLE uses the
nested macro CYCLE in its definition - thus, it is recursive.

18

POLY?2 MACRO VAR ,COEFF1,COEFF2,COEFF3,COEFF4
CLA COEFFL
CYCLE VAR ,COEFF2,COEFF3, COEFF4
ENDM POLV2, NOCRS

CYCLE MACRO VAR ,COEFF2,COEFF3,COEFF4
XCA
FMP VAR
FAD COEZF2
1FF /COEFF3/=//
CYCLE VAR ,~OEFF3,COEFF4
ENDM CY2LE,NOCRS

3 2 ‘- ‘
To expand AX +BX +CX+D (=((AX+B)X+C}X+D) code

POLY2 X,A,B,C,D

POLY2 assembles CLA A, then "calls" CYCLE sending along the
variable name and all but the first coefficient. CYCLE assembles
XCA, FMP X, and FAD B, Since COEFF3 is not null (COEFF3=C), CYCLE
"calls" itself passing along the variable name and all but the
first two coefficients. But now, the "dummy" argument COEFF2 is
replaced by the "dummy" argument COEFF3; i.e. the nested macro is
replaced by CYCLE X,C,D, XCA,FMP X, and FAD C are now assembled.
Since D is not null, CYCLE again calls itself: CYCLE X,D. XCA,
FMP X and FAD D are now assembled. But there are no more co-
efficients after D so that the "dummy" variable COEFF3 is re-
placed by "null” and the macro expansion by recursion ceases.

NOCRS, in the second variable field of the ENDM card in the
macro definition of POLY (and also CYCLE), signals the macro
generator when expanding the macro instructions during the first
assembler pass not to create symbols for substitutable arguments
which are not replaced by real (not “null”) arguments of the macro
instruction used; i.e. NOCRS tells the macro generator to treat
arguments which are not supplied to these macro instructions as

if they were specifically "null" - blank or zero as appropriate.
Otherwise the macro generator would create symbols (if in this
mode) of the form ..nnnn (such as ..0001, ..0002, etc.) for these

arguments. Since, in CYCLE, COEFF3 is compared literally to
blanks and expansion ends when CYCLE is a "null" argument, symbols
which might be created (without NOCRS) in the recursion must be
suppressed in order to terminate the expansion by this method. If
they are not suppressed the macro CYCLE would call itself unend-
ingly - the assembler would "hang up" in a loop in its first pass.
This error, called "circularity of definition", is to be avoided
at all times, and it is the programmer's responsibility to detect
this situation - not the assembler's.

A method of evaluating

19

CI*V1+C2*V +C3#V3+, . . +ON"UN

allotting a cell to each product is as follows:

LDQ
FMP
STO
LDQ
FMP
STO

LDPQ
FMP
F2D

FAD
FAD

Cl1

w1
STOR
C2

V2
STOR+1

CN
VN
STOR+N~-2

STOR+1
STOR

where STOR is the first location of a block of temporary storage
cells. A single macro instruction can be defined to do this

expansion:

oXO®Ul pUd

dooT guI avd pus®

shexoxs Axexodwsl woxI gvd STqUasse usayly
‘(usns® ST *Z°Z)UA ST Yy Fo 3usumbreqns JT

pue ‘oxsz 30U ST °yY°V¥ IT

*Z°7 UBA3® JIOJ OIdZ puk ‘°z*yz ppo IO0F T ST °g°d
pajeduniy g/°z°Z O3 39S "¥°V

1 Aq *Zz°7Z 3uswaIdap

dooT dy¥I avd Isjus

dooT d¥I =2103s pue Afdr3iinu pus

obexols Axexodwal o3uUT QIS B STqUSSSe UdY]

'un ST ¥ Jo jusunbaeqns IT

pue ‘ated 3seT oyl 3ou st ared uaud a3 IT
peTquasse ST UA dWJd pue

UA ST ¥ JO jusundiegns usym 018z ST °*g°9
peTquasse st Yo paT pue

up ST ¥ Jo jusunbieqns usym T ST °g°d

°Z°Z USAS I0OJ OI3Z ST °g°9 '°Z°Z Ppo I0F T ST °"g°9
psjeduniy g/°Zz°7 03 IS "Y'V

¥ JOo jusumbaeqns yoses I10F T AQ °Z°Z JuswaIDUT
dooT gy 21035 pue ATdr3Tnw Ia3us

oxsz 03 °z°gZ 388 ATTRTITUT

peaTey ST (UdAD sSBM UDTUMm) °*X°X

¥ JO sjusumbieqns Jo ‘ou=°x°X ‘dooT Jdyr IO pus 3e
¥ JOo jusumbieqns yoses I0F T AQ °X°X JuswaIdUT
¥ 3O sjusumnbieqns junod 03 dooT gul IS3Ius

0I19Z 03 °X°*X 395 ATTeTI3TUuT

sjonpoad ppe 03 oxdew juswunbie om3} B sUTISP

20

Taoyavy

T-° ¥ V+1L
o="d°d

aNy ‘0="VY"¥
‘Y UxZ-"Z°Z
Z/°2°2
1-°2°2

v

T-° V" ¥+1L
".m.m
ANV ‘"X X-="V¥°'V

o
i
4

°

~
[
KON NNMEKM

A £ Y4l

N
~

NNNM

~
*

WONA
ddT
avd
LAT
JdT
LIS
LS
LIS
dyl
44T
oLS
LAT
LJdT
dWA
LdT
Oa1
LdT
LIS
LAS
LAS
dyT
LIS
LAS
dyr
LES
d3aT
LdS

OdOYW

N ﬂ [a3]
N« M

L]

Q

N
<
N

XX

XX

"X°X
Taoddav

Wran

useds

21

APRGDL

outlined previously is generated.

STOR(C1,V1,:

,V2,C3,V3) the code

It is also pessible to solve this problem by defining a macro,

call it
as follows:

APRCD2 MACROC

Z.Z. SET
PROD
ITF

FADD
ENDM

MACRO
SET
FAD

FADD
Z.2.

TEER

FADD
ENDM

ATROD2, which calls two recursive macros,

T,C1,v1,C2,V2,C3,V3
~1
T,CL1,v1,C2,Vv2,C3,V3
Z.Z2.=0

T
APROD2, NOCRS

T,C1,V1,C2,V2,C3,V3
Z.Z.+1

cl

V1

/c2/=//

T+Z .2,
/c2/=//

T,C2,V2,C3,V3

PROD,NOCRS

FADD

Wren used:

APRCD2

PROD and FADD,

define macro for max.no.of

arg. desired

rth product stored in T+n-1 cell
do all multiplies and temp. stores
if there is more than one product
call FADD to generate sum

end macro and suppress created
symbols

define macro for max. no. of
args desired

increment product counter,
Z.Z2., by 1

assemble LDQ for present Cl
and FMP for present V1

if there are more products to
assemble

store this product in temp cell
if there are more products to
assemble

call PROD to assemble the next
one

end macro and suppress created
symbols

define macro with one argument
decrement product counter by 1
FAD temp storage cell (reverse
order)

if there is still a product
unsummed

call FADD to sum it

STOR, C1,V1,C2,V2,C3,V3

the code outlined previously is again generatad.

22

The question arises: Which APROD macro definition is pre-
ferable? There are several factors to be considered. APRODI1,
as is, can hardle ar indefinite number of products. whereas the
definition of APROD2 (and PROD} must be changed to include the new
arguments whenever a new maximum number (greater than the number
in the present definition; i.e. 3) of products is required. APROD1,
being longer than the combined lengths of APROD2,PROD, and FADD,
requires more cells in the macro skeleton table, but requires
fewer entries in the macro parameter table. However, APROD1 re-
quires that 12P "if" statements (P is the number of products),
14p+3 SET statemenrts, and 3 "IRP loops” be processed, while
APROD2 (including its nested recursive macros) regquires only the
processing of 3P "i1f's”, 2P SET's and 2P - 1 nested macros - re-
sulting in relatively shorter assembly time for the expansion of
APROD2 as compared with APROD1 (about 16 - 25% of the time).

Comparing the first non-nested. non-recursive PCLY macro
(defined in the section "IRP - the Indefinite Repeat Pseudo-
Operation”, page 9) with POLY2, page 18 (because they e xpand
to the same code), one finds that POLY regquires the processing
of no "if‘s"™, no SET's and 1 "IRP loop", while POLY2 requires
the processing of C "if‘s"” (where C is the number of coefficients
in the polynomial), no SET's and C nested macros. Obviously,
POLY should assemble considerably faster than POLY2.

In general, however, it may be stated that a macro definition
utilizing nested recursive macros will probably expand faster
(i.e. require less assembly time) than the equivalent non—recur51ve
macro whenever action is required in the "IRP loop"” of the non-
recursive macro which is dependent upon particular subarguments
of the IRP parameter. To differentiate between subarguments
requires "if"” statements, {and usually SET's) and these require
additional processing. Recursive macros, however, do not have
to differentiate between subarguments (in fact "IRP loops" are
rarely used here), because each parameter is separately named
in the argument list.

The primary virtue, then., of recursive macros in replacing
IRP's, "if's", and SET's is speed - and the primary virtue of
IRP's, etc., in non-recursive macros is that the number of sub-
arguments of an argument may be "limitless” and independent of
the macro definition.

23

Non-recursive nested macras may alsoc b= of considerable utility
to the programmer who is faced with a task of out-of-the ordinary
complexity. For example, in explorirg the possibilities of more
efficient compilation of aritbmetic statements, tke author developed
a package {"Mactran®”) of 20 macros ' nasted 11 iJ=2p, to accomplish
the task of compilation.

ADDITIONAL ITEMS

DMC - the Print Macro Cards Pseudo Operaticn

If the programmer desires to hava thke nompleats expansion,
including "if" and SET statements and mnemor.ics for all assembled
and unassembled instructions and pseudo ops ir the order in which
they are processed, Lhe may use the PMC oparation. <Coding

Me CN
will yield the complete expansiorn {IRP's are rot printed,

PMC OFF
(the normal mode) suppresses all 2xpansion of macros except for
assembled macro instruction names and arguments. Coding PMC with
any other variable field reverses the setting of the switch. The
switch setting may be changed as many times and at as many places
in the program deck as desired by the irsertion cf the proper

PMC cards.

ETC Cards in Macro Definitions and Irnstruct.ons

If a macro definition regquires more “dummy” arguments than
can be put on the MACRO card, the ETC card may be used (the maxi-
mum number of substitutable arguments 1s still limited to 63).
For example:

SMF MACRO AL, TRANS ,BUF ,HERE
ETC STCR,TCM

24

There are two ways to use ETC cards when using macro instruc-

tions. The first is similar to the use of ETC in the macro definition
(above) :
T SMF X,Y,2,
ETC A,B,C

In this case, however, the comma following Z is required.
If an ETC card is required while writing out the substitutable
subarguments replacing a "dummy" argument, the subarguments
must extend into column 72 and then be continued on a following

ETC card - even if this means breaking up a symbolic name. For
example,

8. 12-16 72

SMF ERROR,ABC (MM ,X,Y,...,SYM
ETC BOL,T,U,V,X)A,B,C

An Additional Note on the SET Pseudo Operation

If the macro defined as follows:

EXAMP MACRO A,B
Z.2, SET A

IFT B=6, AND
IFT Z2.2.=0
CLA XX
ENDM EXAMP

is used: EXAMP 13.5,6 where 13.5 is a floating

point number,
then CLA XX

is assembled.

25

The points here emphasized are that the set-value of a float-
ing point constant is zero (it cannot be differentiated in this
respect from a virtual symbol), and that the set-value of a
fixed point constant is equal to the value of the fixed point
constant-modulo 32.768.

Discussion of the Operation and Use of the Macro Generator

The "device" that is called the "macro generator® is nothing
more than the part of the IBMAP assembler that is responsible
for the checking and special encoding of macro definitions
into the macro skeleton table and for the checking and ex-
pansion of macro instructions where they occur in the pro-
gram deck by decoding the definition in the macro skeleton
table back into BCD-~like representation. IBMAP is a two pass
(really 2 1/2) assembler. but the action taken by the macro
generator is in the first pass only. Thus, code "generated"
in a macro expansion and programmer generated code look
essentially the same to the second pass of the assembler.

The encoded form of the macro definition in the macro
skeleton table is binary coded decimal, with special control
character use being made of the octal numbers 75, 76, and 77
(which do not represent any BCD character). These control
characters may appear either alone or with another control
character and their meaning varies accordingly. They are used
both to preface and to suffix segments of the BCD code. For
example, the suffix 7577 signals to the macro generator that
the end of the macro has been reached. The scheme is similar
in general to the scheme used in PREST.

The encoding of the macro definition and the decoding of
the definition for the expansion of each macro instruction
encountered is accomplished quite rapidly. The "IRP loops"
are actually expanded during the decoding process itself;
in fact, the "opening" IRP pseudo-op is replaced in the macro
skeleton table by the code 7676N, where N is the position of
the "dummy" argument in the argument list (0l, 02, etc.) and
the "closing" IRP pseudo-op is replaced by 7677. Thus, the
reason no IRP operation appears in the programmer's assembly
listings, even with PMC ON, is because the BCD representation
of this pseudo-op does not exist after the first assembly
pass.

The "if" pseudo-operations and the SET pseudo-operation
are also evaluated in the assembler's first pass. That this
must be so can be seen from the following:

26

Z.2, SET 6
IFT 2.2.=6
XXX A,B,C

where XXX is a previously defined macro instruction. 1In order to
expand the macro XXX it must first be known if it is true that the
S-value of Z.Z. is 6. Since macro expansions occur in the first
pass, so then must "if" and SET be evaluated in the first pass.

Some mention has already been made of the trade-offs involved
in chosing the "best" way to write a macro definition to do a par-
ticular job (see the section "Recursive and Non-Recursive Nested
Macros®"). Basically, there are three factors to be considered:
The efficiency of the object code that the macro produces, the
time required by the assembler to expand the macro whenever it is
used, and the number of macro definitions desired for one program
deck (each program deck, since it is assembled separately, must
have its own macro definitions). A macro definition that produces
the shortest object code to do the job usually is longer than one
which produces code which is not as efficient. The longer the de-
finition is, the more pseudo ops ("if's", SET's, and IRP's particu-
larly} it will usually contain and the longer the time that is
usually required to expand each macro instruction. On the other
hand, the shorter the definition is, the more room for additional
definitions there is.

Obviously then, the answer to how a particular macro definition
can best be written will depend on the circumstances. The author's
general rule-of-thumb is: write the macro definition that will
assemble the best object code consistent with the number of macro
definitions necessary for the program deck - and let the assembly
time take care of itself.

The amount of space available for macro definitions varies
because the macro skeleton table shares a block of core with the
macro parameter table. Macro skeleton table overflow is likely
to wccur when the number of lines of coded macro definitions
‘approaches"”" 400. The error message received is "Macro Skeleton
Table Overflow, No More Definitions Accepted". It is an error
of level 4. Also possible is the "Macro Parameter Push Down Table
Overflow" message of severity 5.

27

Appendix A: A fet of Fortran-like Macro Definitioas / Mactran™:

L

As part of a recent study--an attempt to read certain Fortran
source statements (with possibly slight revision} directly into
the IEMAP assembler to be translated and assembled by a group of
macres | "Mactran") instead of by a compiler--a set of macro de-
finitions were developed which might be of interest to the applications
programmer. These Mactran definitions enable the programmer to
use the Fortran "Go To", "Computed Go To", and "Do" and "Continue"
statements, and simplified forms of the "Read" and "Write" statements.

The "Go To" and the "Computed Go To" Statements

GO.TO MACRO A,B "Go To" or "Computed Gc To" macro
Z.7Z. SET 0] initialize transfer point counter
IRP A enter "IRP loop" to count transfer
points
Z.Z2. SET Z.Z.+1 increment transfer pt. counter by 1
IRP end count loop
1FF z.z.=1 if this is a "Computed Go To"
LAC B,4 load XR4 with 2's comp of index, B
IFF Z.Z.=1 if this is a "Computed 3o To"
TXL ERROR,4,~2.2Z2.-1 test legitimacy of index
IFF Z2.Z.=1 if this is a "Computed <o To"
TRA *,4 trans to proper transfer using
index
IRP A enter transfer point loop
TRA A assemble a transfer for each trans
point
TRP end transfer point loop
ENDM GO0.TO end macro
Coding: 8 12-16
30.,TO (xX1,vl,z1)aa

assemble the following code:

LAC ARA,4

TXL ERROR , 4, -4
TRA ¥4

TRA X1

TRA vl

TRA Al

where ERROR is the name of the user supplied error routine for an in-
correct index value. If no checking of index value is desired, the
TXL instruction and the IFF operation preceding it may both be re-
moved from the definition.

28

Note that the code produced by this definition is essentially
identical to the code compiled by Fortran IV for the "Computed
Go To" statement. Note also that GO.TO destroys the contents
of index register 4; its contents should be saved prior to coding
GO.TO if required. The GO.TO definition can be altered to do this
(not shown).

Coding 8 12-16
GO.TO BLAZES

produces the single instruction:
TRA BLAZES
and index register 4 is not destroyed.

Imbedded blanks are not allowed in the names of macro instructions-
hence the "period" in "GO.TO".

29

IXSu 8Yy3 IJOF T usay3l

IXdU 8yl IJI03 T uayl

I0 ‘IINU ST V¥ IT
I0 ‘T ST ¥ 3T
T="2"Z o3eu

IInu I0 0182 ST ¥ IT
juswnbie 8yl Jo snTea-38s o9yl oOF Tenbs st *Z°2

(AId) ¥ DV I0 ¥ DXV Ssojersush

oxdoeW pud

T A s,00 p2@3sou JO 3UNOD 9SeIIDSP
bej Teutbtio sy3z sio03sax

(ATS)

NILNOD UT HXL 3JO
*L°L’D J¥T 0

*L°L’'d OVT IO

ISN SSTMIdyjzo :0q 3o dojz o3 ob d {(°L°L)D IT

g4 Aq bel sy3z juswsIdOUT

NILNOD V¥

Z udy3z ‘oqg xsdssp
‘Z 3SITF ST ‘bey Byl ‘°I°IL

Z/°0°d °3eouniy
:sST wroy :psartnbeox

SToquAs p®3jesId ou

‘Ippe UT T+x JO D0T 21038
"L°L’D DXV STquesse uayl
d se awes syj ATTeId®3T[30U ST O IT
pue ‘TTnu 30u ST ¥ IT

X0 ‘T ATTeI®3TT 30U ST D IT
NILNOD UT IXI UT 3USWSIDUT sSe (°L°L)D osn

‘L L

‘(ITnu & IT T)d OXV

NILNOOD UT HXIL UT 3s®3 se ("L L)D °osn
T A9 °*I°1 JO S3ju®3uod aseaIdsp

L°L ‘d OV X0 ‘IL°1'd OXY

bey sy3y sxo3s

Z usyz ’‘oqg asdsep
‘T 3saTFI ST ‘bex 8y3l ‘°L°L

Z/°0°a ®3eouniiy

T Ag s,0q p@3sau Jo 3uUnod JuSWSIdUT

(AId)

4'a’o=4d v oa

$ST WIOJF

q0'//=/Y/ IJdT

40 /1/=/¥/ LJAT
T LAS ‘272

0 =°2°2 LAT
A4 LAS "Z°Z
Y OdOVYIN INTA°d

NILNOD WAaNd
I-°0°a LIS ‘0°d

LL xx LXV

*»2' LT xx HXL

*2 "L T T+« IXIL
X XeZ-"0"Q+1 LAS R P
z/°0°a LIS "X°X
OYDOVIW NILNOD

SYDON ‘' 0a WAaNH

T+ ,Y, TLS

o IANTII°d

/a/ = /o/ JJI

any ‘// = /a/ JdT

¥'/1/ = /o/ JII

‘L°L‘VY axs

d IANId*a

‘L°L ‘T + VY, axs

T - "°"L°1L 'T++% IXL

a ANTA° Qg

‘L°L ‘T + .Y, ¥XS
XX T - "0°A + T LIS ‘L&
z/°0°a LIS "X°X
T+ °0°a LAS *0°a
a‘a‘s’'ga’vw OUDOVYIN oa
sjuswsjelg ,dnUrjuoy, pue ,od, oUL

30

oxoew pus

JYI ' STquesse

sao0de 9y3z

Jo suou

ST ¥ I°¢

OXY u®e STquesse

1 ueyl xo3eaIb IdBqUNU B ST ¥ IJT

SYOON "ENTA°d
"L°L'Y
T+="2"7%

anvy ‘//=/¥/
aNnvy ‘/1/=/%9/
cpL 7oy
T+="2°2

WAaNH
o141
JAT
JdT
JdAT
IXY
LA I

31

In Fortran one writes:

DO 100 I=1,10,2 or
DO 200 J=2,12 etc.

In IBMAP using the above Mactran macro definitions one may code

8 12-16
DO AL,I,1,10,2 or
DO BB,J,2,12
BB CONTIN
AL CONTIN

Note that CONTIN must be coded at the end of the DO loop. Any sym

bolic name may be used for any argument (there are no fixed re-
strictions).

These Mactran DO loops may be nested to any level. The tag
used in the first level is 2, the tag used in the second level is
1, the third 2, etc. The pertinent tag is automatically saved be-
fore entering each DO and restored upon leaving. The index is not
stored at the top of the DO loop. If the programmer desires to
store the updated index, the first instruction before the DO in-
struction should be "STZ index" and the first instruction follow-
ing the DO instruction should be "SCA index, T.T."

In this form of DO and CONTIN the index is given an initial
value of -C and is incremented by -E until it is greater than
-D-1. This conforms to the Fortran IV convention for forward-
stored arrays. To give the index an original value of C and to
increment it by E until it surpasses D, conforming to the Fortran
convention, use the following Mactran definitions:

II

ST ¥ IT

LXY Ue aTquasse

1 ueyl I93ealib Foqunu © ST ¥ JT

I0 'TIfnU ST ¥ JFT

I0 ‘T ST ¥ 3T

1="2°Z Sxew

1InuU JI0 O0J@Z ST ¥ IT

Juaunbae 2YI JO SNIRA-1INS 2Y3 03 Tenbs st °Z°7Z
¥ ¥YXT IO ¥ IXV sS231easusb

olorw pud
1 A9 5,00 P9o23IS8U JO JUNOD ISEBIIDP
bey 1eutbhiIo 92yl 8I103s5x
ISN 9sTmIaylo (0d Jo dol 03 ob aF*1-1L)d It
d AQq bel 9yl JUSWOIDUT
Z usyzx ‘og xsdesp
1IX3U BYy3l JI0F T usdyl ‘g 3IsSITF ST ‘HBex saylz ‘"Ll
Z/*0°d @3eduni3y
(ITd) NTINOD V¥ :ST wIojF :poxtnbaa

32

STOoqwAsS pS31esId ou
NTINOD UT TXd, FO IpPPE UT T+4 JFO *DOT SI03S
*L°L'D ¥XT I0 °I°L’D IXY oTquesse uayl
d sp swes syl ATTRIDITT 3JOoU ST D IT
pue ‘Tfnu jou ST 1 JIT
J0 ‘T AT{Tea®3TIT 30U ST D IT
NIINOD UT IXJI UT JuswaIdUTr Se (*1°L)D °sn
LI '@ ¥XT I0 Lol C(TTnu 3 FT OT1d IXY
NIINOD UT TXJIL UuT 3§83 S® (°L°L)D 9sn
“LTL'd ¥XT I0 °L°L'd IXY
bey ay3z oI103s

Z u2ya ‘og a=desp
IXdU BY} I0F T USYI ‘g 3ISATI ST ‘bel syix’ Il
Z/°0°d ®3edunIy
T Aq 5,00 pP®3Sau JO JUNOD JUSWSIDUT
(I14) ‘4'd'D=d ¥ 0d :ST wIojg

aNv'/1/=/%/
‘L5 "z°Z
T+="2°7Z

qo“ //=/9/
a0’ /1/=/%/
T

0=°"2"72

Y

Y

NTIINOD
1-°0°d
L L %y
P A

xx "TLTL ‘T4«

‘X XxC~'0 Q+T
Z/°0°d

SYDON‘0d
T+, Y,

o

/a/=/d/
any'’//=/4/
90 /1/=/2/
"LeL'Y

a

TLOL T+, Y,
a
LT+, Y,

"X XxZ="0"U+T
z/°0°d
1+°0°Q

a‘a’‘o‘ga’‘v

dd4T
LXV
Led L
LA T
LAT
LHS
LAT
LES
OR=19) 41}

WA
L4ds
LXY
TX.L
IXL

LdS
LAS
O¥OVYW

WaNd
TLS
ANTAd
g4I
J4T
d4T
axs
ANTAd
axs
ANTH°d
X5

LIS
LdS
LAS
OUOVNH

CN.N
ANTA" A

L L
‘XX
NTINOD

33

oxdoevw pus

YXT Ue oTquasse
aaoqe oyl

Jo auou

SUDON ‘ ENTI° a
opH.o'H.§<
T+="2°7

any ‘//=/%\/

WaNd

A4T
g4T

34

Here, too, CONTIN must be coded at the end of the DO loop,
any symbolic name may be used for any argument, the DO loops may
be nested to any level, and the pertinent tag (2,1,2....) is auto-
matically saved before entering each DO and restored upon leaving
the loop. The index is not stored at the top of the DO loop. If
the programmer desires to store the updated index, the first in-
struction before the DO instruction should be "STZ index" and the

first instruction following the DO instruction should be "SXA in-
dex, T.T."

If the following is coded:

1 8 12-16
DO FSAM .X,1,N (Meaning: DO FSAM
X=1,N)
FSaM CONTIN

the following is generated by each set of macros:

FIv FII
SXA FSaM+2,2 SXA FSAM+2, 2
LAC N,2 LXA N,2
TXI *+1,2,-1 SXD FSaM+1, 2
SXD FSAM+1,2 AXT 1,2
AXC 1,2 SXD FSaM, 2
SXD FSaM,2 STL FSAM+1
STL FSAM+1
FSAM TXI *+]1 ,2*%*FSAM T™XI *¥+1,2,%*
TXH L I TXL *k 2, K%
AXT *x 2 AXT ¥k D

DO GSaM,I,1,9.3 (meaning: DO GSAM I=1,9,3)

GSAM CONTIN

35

is assembled as follows - if it is the 6th nested DO loop in a
"nest":

FIV FIL
SXA GSAM+2,1 SXA GSaM+2,1
AXC 9,1 AXT 9,1
X1 *+1,1,-1 SXD GSAM+1,1
SXD GSAM+1,1 AXT 3,1
AXC 3,1 SXD GSAM, 1
SXD GSaM, 1 AXT 1,1
AXC 1,1 STL GSAM+1
STL GSAM+1

GSAM TXI *+1,1,%% GSAM TXI *+1,1,**
TXH kk] Kk TXL *k], Kk
AXT ** 1 AXT *% 1

The "Read" and "Write" Statements

In Fortran IV one may write:
READ (5,100)A,B,C
and

WRITE (6,200)X,Y,2,22
Using the Mactran macro definitions one may write:

8 12-16

READ (5,AL)A,B,C and

WRITE (6,SAM)X,Y,2,22

dooT 3I®AUOD pusd

SUT3INOI 3ISAUOD AI 4 03 XSI STquwasse
TIhu 30U ST jFuswnbaeqns syl JT

U913 TIM Sq 03 IJ9j3swexed YID STquasse
TINU 30U ST juswnbieqns ay3l 3IT

doOT 3I9AU0D I93UD

bUT3 TIM I0F saojsweaed 3ISAUOD

oIdoeW JO pud

dooT EZd4d JO pu®

JewIOI JO SS9Ippe YITM HZd STquosse

ZY¥ ST jusumnbieqns sTyl IT

*,S3ThbTp 7 ,NN~ dZd STquasse

o1€ v IT

pue ‘I¥ ST jusunbaeqgns sTyl 3IT

,3TOTP T,0NN" HdZd @Tquosse

0T 21TV 3T

pue ‘¥ ST juswnbieqns STyl 3II

1 Aq z93utod jusweIdUT

20TM3 posadaeIl 9q TITM {doOT HAZJ IS33u3
as3utTod Y 92ZTTRT3ITUT

uinjeax piepueris J0JF pdxtnbai gzd Aumunp
sjuswunbae gz I03J s,dZd punoxe IXI oTquosse
s,4Zd pue IXI STquesse

sTOquAs po3edId OU

3STT JO pus I03F AIju® L2UTINOI AT J 03 XSIL
S$,0LS pue §’° ANDJ° O3F S,XSL STquasse
S,HdZd pue IXI SsTquasse

*3d Ax3us peax AxeIqIT AI ueIlIod O3 XSI
A'3'a’nD’'d(zv’1v) avdy :wIoj

STOquWAS poS3e2Id OU

2UT1INOI AT 4 buTtsn 83 Tam Syl sSpua STYI

b ANDA" 03 s,X¥L pue s,¥ID STquesse
S,HZd pPu® IXI STqWoSsse

*3d Axjue o31am Axeaqll AL ueIjlIod 03} XSIL
A2°aA’D'4d(gY’ T¥) FLIdM w03

v’ TANOA
//=//
4

//=//

Z="2°2

.Y, NN
0TI-=V¥
aNy’'1="2"2
L, Y,0N0°
0T~-=V¥

aNvy ‘T="Z°2Z
I+°2°2

Y

0

rA 2
A4

SYDON‘ Qvdd
¥ ONLYA”
(1'g2’'a’n’d)
(¥)
¥oaaadc
A'@7‘@a’n'a’y

SMOON AL TEM
PoTLdadc
(d'3’'a@’s’g)
{Y¥)

P’ qamd ”
4'7a’v’'qa9’'v

dyT
XSL
J4T
Yo
J4T1
daI
OUDVIN

WaNd
ddl
dZd
LAT
dZd
ddT
LdAT
dZd
LAT
LAT
LS
dadl
LIS
qdZd
IXL

OdDVIN

avdyd

HLITUM

37

oIdeuw pus

dooT 3x92AUOD pUD

BlRp POIIASAUOD IO0J QLS S[quasse

TInu jou ST juswnbieqns ay3 IT
2UTINOI 1I9AUON AT J 03 XSI STquasse
IIhu jou ST juswnbxeqns 8yl 3IJT

dooT 3I19AUOD I93UD

Ut peox siojswered 3IDAUOD

oxdew pua

WaNg
ddl
OLS
J47T
XS
JAT
ddI

OdOVN

WaONA

Thus, codings

READ (5,AL)A,B,C

o

°

WRITE (6,SAM)X,Y,2,2Z2

produces the following code:

TSX .FRDD, ,4
TXI *+4,,2
PZE

PZE .UNO5.
PZE AL

TSX .FCNV. ,4
STO A

TSX .FCNV. , 4
STO B

TSX .FCNV. ,4
STO c

TSX .FRTN. ,4
TSX .FWRD. ,4
TXI *+4,,2
PZE

PZE . UNO6.
PZE SAM

CLA X

TSX .FCNV.,4
CLA Y

TSX .FCNV. ,4
CLA 4

TSX .FCNV.,4
CLA ZZ

TSX .FCNV.,4

TSX -FFIL.,4

39

This Mactran code is identical to the code produced by the
Fortran IV compiler for equivalent source statements, except that
Fortran compiles the pseudo-operation CALL instead of TSX, etc.

As the READ and WRITE macros are defined here they handle up to

5 parameters in the I/0 list. To increase the maximum number

of parameters that they can handle the number of "dummy" arguments
must be increased in the READ and WRITE macro definitions, and

the number of subarguments of W.T and R.D must also be increased.
(Note that these macros embody a technigque for making the arguments
of one macro subarguments of a lower nested macro.)

For example, to increase the list capability of WRITE to a
maximum of seven parameters the following changes are required:

WRITE MACRO A,B,C,D,E,F,G,H

and
wW.T {B,C,D,E,F,G,H)

Note that these definitions do not offer the capability of
the "implied DO loop" in the argument list that Fortran does.

These Mactran definitions use the Fortran IV Read-Write
Decimal library routine, FWRD, which in turn uses IOCS, so that
all I/O using these instructions is fully and automatically
overlapped.

The "format statement® referenced in both the READ and WRITE
instructions must conform to Fortran standards. It must be in
BCD form, must begin and end with opening and closing parentheses,
and must contain only matched pairs of parentheses (except in
a Hollerith field). For example, WRITE (6,BBB) refers to the
format statement at BBB. At BBB one might find:

BBB BCI 6 (1B023X21HSTD. FORT. CONVENTION)

Again READ (5,X¥XX!A,B,C refers to the format statement XXX. At
XXX one might find:

XXX BCI 3.({F15 4,1I2/E12.5)

Blanks in “format statements"” are permissable. See the
Systems Reference Library manual "IBM 7090/7094 Programming
Systems, Fortran IV Language" C28-6274 for detailed information
on READ ,WRITE, and FORMAT statements.

40

Appendix B: Bibliography and References

1.

"IBM 7090/7094 Programming Systems, MAP (Macro Assembly
Program) Language", Systems Reference Library, C28-6311-2,
Programming Systems Publications, Poughkeepsie, New York
February, 1964.

"IBM 7090/7094 Programming Systems, Fortran IV Language”,
Systems Reference Library, C28-6274-1, Programming Systems
Publications, Poughkeepsie, New York, May, 1963.

"Preliminary Systems Guide for IBM 7090/7094 Macro Assembly
Program (IBMAP)", IBM 704/709/7090 Program Library, 7090-
SP-804, D. S. Programming Systems, 1 September 1963.

"Mactran", by Gerald M. Berns unpublished, November, 1963

